Cancer-Associated Thrombosis

Peter Verhamme

UZ Leuven – Bloedings- en Vaatziekten
KU Leuven – Dept. Cardiovascsular Sciences
Thrombosis and Cancer

- Malignant tumor
- Thromboembolism

Diagram showing the relationship between malignant tumor and thromboembolism.
Cancer-Associated Thrombosis: Challenges

- Prognostic
- Diagnostic
- Therapeutic
VTE & Cancer: A mortal link

VTE & Cancer: A mortal link

• Thromboembolism is the second leading cause of death in patients with cancer

• Very high mortality of patients with CAT at 6 months

• Prophylaxis of VTE: no impact on mortality

Incidence of cancer in patients with DVT

Incidence of cancer in patients with DVT

Incidence of occult cancer detection in the different studies

1 in 10 patients

1 in 25 patients

Cancer detection

2008 Annals

2011 Trousseau

2016 MVTEP

2016 SOME
Occult cancer screening in VTE patients

Why?
• Earlier detection
 – Curable cancer
 – \uparrow survival
 – \downarrow morbidity

Why not?
• unnecessary invasive procedures
 – “incidental findings”
• No impact on outcome
• Anxiety
• Costs
Limited vs. extensive occult cancer screening strategy

SOMIT
Trousseau
SOME
MTVEP
Patients with unprovoked VTE should undergo:

• Medical history and physical examination
• Basic laboratory investigations
• Chest X-ray
• Age- and gender- specific cancer screening (i.e. cervical, breast, prostate and colon).

Take home messages

• The prevalence of occult cancer in patients with a unprovoked VTE seems to be lower (~4%) than previously reported (10%)

• The risk of occult cancer is similar to the general population after the initial 6 to 12 months of follow-up.

• Limited cancer screening + clinical vigilance
Cancer-Associated Thrombosis: Challenges

• Prognostic
• Diagnostic
• Therapeutic
CLOT: A Landmark

Recurrence of VTE (%)

VKA, 16% (53 events) (TTR 46%)

Dalteparin, 8% (27 events)

Days post-randomization

RR=52%
HR=0.48
(95% CI 0.30–0.77)

NNT = 13

Main outcomes at 6 months from Hokusai-VTE Cancer, SELECT-D and Caravaggio

Recurrent VTE

<table>
<thead>
<tr>
<th>Study</th>
<th>DOAC agent</th>
<th>DOAC Patients</th>
<th>DOAC Event</th>
<th>LMWH Patients</th>
<th>LMWH Event</th>
<th>Risk Ratio</th>
<th>RR</th>
<th>95%-CI</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hokusai VTE Cancer</td>
<td>edoxaban</td>
<td>522</td>
<td>34</td>
<td>524</td>
<td>46</td>
<td>0.74</td>
<td>[0.48; 1.14]</td>
<td>45.4%</td>
<td></td>
</tr>
<tr>
<td>SELECT-D</td>
<td>rivaroxaban</td>
<td>203</td>
<td>7</td>
<td>203</td>
<td>17</td>
<td>0.41</td>
<td>[0.17; 0.97]</td>
<td>11.2%</td>
<td></td>
</tr>
<tr>
<td>Caravaggio</td>
<td>apixaban</td>
<td>576</td>
<td>32</td>
<td>579</td>
<td>46</td>
<td>0.70</td>
<td>[0.45; 1.08]</td>
<td>43.4%</td>
<td></td>
</tr>
<tr>
<td>Random effects model</td>
<td></td>
<td>1301</td>
<td>73</td>
<td>1306</td>
<td>109</td>
<td>0.68</td>
<td>[0.39; 1.17]</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $I^2 = 0\%$, $\tau^2 < 0.0001$, $p = 0.48$

Major bleeding

<table>
<thead>
<tr>
<th>Study</th>
<th>DOAC agent</th>
<th>DOAC Patients</th>
<th>DOAC Event</th>
<th>LMWH Patients</th>
<th>LMWH Event</th>
<th>Risk Ratio</th>
<th>RR</th>
<th>95%-CI</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hokusai VTE Cancer</td>
<td>edoxaban</td>
<td>522</td>
<td>29</td>
<td>524</td>
<td>17</td>
<td>1.71</td>
<td>[0.95; 3.08]</td>
<td>40.3%</td>
<td></td>
</tr>
<tr>
<td>SELECT-D</td>
<td>rivaroxaban</td>
<td>203</td>
<td>11</td>
<td>203</td>
<td>6</td>
<td>1.83</td>
<td>[0.69; 4.86]</td>
<td>18.0%</td>
<td></td>
</tr>
<tr>
<td>Caravaggio</td>
<td>apixaban</td>
<td>576</td>
<td>22</td>
<td>579</td>
<td>23</td>
<td>0.96</td>
<td>[0.54; 1.71]</td>
<td>41.7%</td>
<td></td>
</tr>
<tr>
<td>Random effects model</td>
<td></td>
<td>1301</td>
<td>62</td>
<td>1306</td>
<td>46</td>
<td>1.36</td>
<td>[0.55; 3.35]</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $I^2 = 15\%$, $\tau^2 = 0.0379$, $p = 0.31$
Major bleeding events in patients with Cancer-Associated VTE

GI cancers

Non-GI cancers

HR 4.0 (95% CI 1.5–10.6)

\(p = 0.005 \)

Organ-specific bleeding patterns of anticoagulant therapy: lessons from clinical trials

Thomas Vanassche; Jack Hirsh; John W. Eikelboom; Jeffrey S. Ginsberg
Population Health Research Institute, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
What is important for patients?
What is important for patients?

1. No interference with cancer treatment 39%
What is important for patients?

1. No interference with cancer treatment 39%
2. Efficacy / recurrent VTE 24%
3. Major bleeding 19%
4. Route of Administration 13%
5. Monitoring 2%
6. Minor bleeding 2%
7. Frequency of administration 1%

Simon Noble et al. Haematologica 2015;100:1486-1492
Managing daily challenges

◆ Low platelets
◆ Renal function
◆ Extremes of body weight
◆ Drug-drug interactions

Optimal dosing?
Managing daily challenges

- Low platelets
- Renal function
- Extremes of body weight
- Drug-drug interactions
- Recurrent TE
- Incidental VTE
- Port-a-cath & UE DVT
- Arterial TE
- Management post-bleeding
Which Patients Should Receive Long-Term Anticoagulation?

- Acute
- Long term

3 Months
Which Patients Should Receive Extended Anticoagulation?

1) Persistent Risk Factors
 - Major (e.g., cancer)
 - Minor (e.g., Immobile, FVL)

2) No known risk factors (unprovoked)
 And Low bleeding risk
 And Patient Preference
APICAT STUDY*

Active cancer with symptomatic or incidental proximal DVT and/or PE

Any anticoagulant for ≥ 6 months

Apixaban n=861
5 mg BID
12 months

Apixaban n=861
2.5 mg BID

* NCT03692065
Managing daily challenges

◆ No ‘One size fits all’ approach

◆ Patient selection is key:
 tumor type
 bleeding risk/renal function/thrombus burden…
 drug–drug interactions
 patient preferences
Cancer-Associated Thrombosis

Peter Verhamme

UZ Leuven – Bloedings- en Vaatziekten
KU Leuven – Dept. Cardiovascular Sciences