NON-THERMAL
NON-TUMESCENT
endovenous treatments:

is it time to stop the fire?

Sergio Gianesini, MD, PhD FACS
University of Ferrara – ITALY
USUHS Bethesda - USA
COI

Italian Ministry of Health grant winner

Scientific Thermal Research foundation grant winner

Speaker fee: alfasigma, medi, servier

Scientific consultant: aivarix, alfasigma, i-vasc, servier
Global guidelines trends & controversies in lower limb venous and lymphatic disease
Gianesini S et al.

Sergio Gianesini MD, PhD, FACS
University of Ferrara (ITALY)
UCES University (ARGENTINA)
USUHS University, Bethesda (USA)
SECTIONS

1. Lower limb venous ultrasound
2. Endovenous saphenous ablation
3. Bandaging, Adjustable Compression Wraps, IPC
4. Graduated Elastic Stockings
5. Sclerotherapy for varicose veins
6. Aesthetic phlebology
7. Acute and chronic deep venous disease
8. Venous Active Drugs
9. Ulcer management
10. Lower limb lymphedema
11. Venous thrombosis management
Thermal Tumescent (EVLA; RF)

*recommended by NICE without GRADE
Why not going thermal?

Recommended by the guidelines
Mini-invasive
Fast
Why not going thermal?

Recommended by the guidelines
Mini-invasive
Fast

Tumescence can bother rare but possible thermal injury potentially more cost-effective & faster
What are we looking at?

Uhm, what are we looking at sir?

the best outcome

OCCLUSION RATE

PATIENT REPORTED OUTCOME

CLINICAL SUCCESS
<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention</th>
<th>Lasserre</th>
<th>Undersander</th>
<th>Britannia</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVLEA</td>
<td>Fibre</td>
<td>Bare tipped 900-1470 nm (Catalyst D)</td>
<td>Bare tipped 1470 nm (ELVAD)</td>
<td>No specification</td>
</tr>
<tr>
<td>Cannulation</td>
<td>All studies -- GSV under ultrasound guidance at level of knee or lowest point of reflux, advanced to 2 cm from SF</td>
<td>>60 J/cm</td>
<td>70 J/cm</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>All studies -- tumescence analgesia +/- local infiltration</td>
<td>69 J/cm</td>
<td>>60 J/cm</td>
<td></td>
</tr>
<tr>
<td>Anaesthesia</td>
<td>Concurrent phlebectomies</td>
<td>Concurrent phlebectomies</td>
<td>Concurrent or delayed (3 months) phlebectomies</td>
<td></td>
</tr>
<tr>
<td>Tributaries</td>
<td>Concurrent phlebectomies</td>
<td>Concurrent phlebectomies</td>
<td>Concurrent or delayed (3 months) phlebectomies</td>
<td></td>
</tr>
<tr>
<td>RFA</td>
<td>VNUS, cannulation just below knee GSV or lowest point of reflux with concurrent phlebectomies, under tumescence analgesia</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>UGFS</td>
<td>Polidocanol</td>
<td>Sodium tetradesyl sulphonate</td>
<td>Polidocanol</td>
<td>Sodium tetradesyl sulphonate</td>
</tr>
<tr>
<td>Concentration</td>
<td>3%</td>
<td>1%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Volume</td>
<td>Not specified</td>
<td>Median 12 ml/session</td>
<td>Maximum 10 ml/session</td>
<td>Maximum 12 ml/session</td>
</tr>
<tr>
<td>Technique</td>
<td>Single cannula just below knee</td>
<td>Single cannula at knee level</td>
<td>As per 2nd European Consensus</td>
<td>No specifications regarding number of injections/kites</td>
</tr>
</tbody>
</table>

EVLEA: endovenous laser ablation; RFA: radiofrequency ablation; UGFS: ultrasound-guided foam sclerotherapy; SF: saphenofemoral junction; GSV: great saphenous vein.

Anatomical success

TT > UGFS

Uhm, what are we looking at sir?

the best outcome
CLINICAL success & PRO

TT = UGFS

Uhm, what are we looking at sir?
<table>
<thead>
<tr>
<th>Intervention</th>
<th>Rasmussen</th>
<th>Lattimer</th>
<th>Biemons</th>
<th>Britzenden</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVLA Fibre</td>
<td>Bare tipped 980–1,470 nm (Ceratas D)</td>
<td>Bare tipped 1,470 nm (ELVAG)</td>
<td>Bare tipped 940 nm (manufacturer not specified)</td>
<td>No specification</td>
</tr>
<tr>
<td>Cannulation</td>
<td>All studies – GSV under ultrasound guidance at level of knee or lowest point of reflux, advanced to 2 cm from SFJ</td>
<td>All studies – tumescence analgesia +/- light sedation</td>
<td>Concurrent phlebectomies</td>
<td>Concurrent or delayed (3 months) phlebectomies</td>
</tr>
<tr>
<td>Energy</td>
<td>>60 J/cm</td>
<td>>69 J/cm</td>
<td>>70 J/cm</td>
<td></td>
</tr>
<tr>
<td>Anaesthesia</td>
<td>All studies – tumescence analgesia + light sedation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributaries</td>
<td>Concurrent phlebectomies</td>
<td>Concurrent phlebectomies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFA</td>
<td>VNJJS, cannulation just below knee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UGFS</td>
<td>Polidocanol</td>
<td>Sodium tetradeethyl sulphate</td>
<td>Polidocanol</td>
<td>Sodium tetradeethyl sulphate</td>
</tr>
<tr>
<td>Concentration</td>
<td>3%</td>
<td>1%</td>
<td>3%</td>
<td>3% truncal, 1% to varicosities</td>
</tr>
<tr>
<td>Volume</td>
<td>Not specified</td>
<td>Median 12 ml/session</td>
<td>Maximum 10 ml/session</td>
<td>Maximum 12 ml/session</td>
</tr>
<tr>
<td>Technique</td>
<td>Single cannula just below knee</td>
<td>Single cannula at knee level. Continue injection until foam visualised at SFJ and GSV contracted</td>
<td>As per 2nd European Consensus</td>
<td>No specifications regarding number of injections/site</td>
</tr>
</tbody>
</table>

EVLA: endovenous laser ablation; RFA: radiofrequency ablation; UGFS: ultrasound guided foam sclerotherapy; SFJ: sapheno-femoral junctions; GSV: great saphenous veins.

MORBIDITY & COMPLICATION

TT = UGFS

Uhmm, what are we looking at sir?
COST-EFFECTIVENESS

TT < UGFS

The best outcome: *Uhm, what are we looking at, sir?*
FOAM SCLEROTHERAPY: how to improve the OCCLUSION rate

- Br J Surg 2018 (Valhaaho S)(occlusion rate): 5 YEARS: surgery (96%) vs EVLA (89 %) vs UGFS (51%)

- Br J Surg 2018 (Lam YL)(symptom free): 8 YEARS: surgery (72.1%) vs UGFS (55.1%)
How much does the vein wall thickness count?
Tunica Intima

Device-induced spasm

+ foam

SYNERGY (spasm, sclero volume reduction, full-wall fibrosis)

Table 2. Histological aspects of veins in the follow-up experiments.

<table>
<thead>
<tr>
<th>Table 2. Histological aspects of veins in the follow-up experiments.</th>
<th>MOCA (n = 6)</th>
<th>Mechanical (n = 6)</th>
<th>Aethoysklerol 2% (n = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow-up 6 weeks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspect lumen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occlusion</td>
<td>4 (67)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Open</td>
<td>2 (33)</td>
<td>6 (100)</td>
<td>6 (100)</td>
</tr>
<tr>
<td>Vessel diameter (mm)</td>
<td>3.2 (1.7–4.8)</td>
<td>4.0 (2.0–5.5)</td>
<td>4.7 (3.3–6.0)</td>
</tr>
<tr>
<td>Lumen diameter (mm)</td>
<td>1.1 (0–4.4)</td>
<td>3.6 (1.7–5.1)</td>
<td>4.5 (1.7–5.6)</td>
</tr>
<tr>
<td>Lumen area (mm²)</td>
<td>1.2 (0–11.9)</td>
<td>6.7 (3.3–15.2)</td>
<td>14.9 (0.8–33.6)</td>
</tr>
<tr>
<td>Intimal hyperplasia</td>
<td>5 (83)</td>
<td>0 (0)</td>
<td>2 (33)</td>
</tr>
<tr>
<td>Intimal hyperplasia area (mm²)</td>
<td>1.1 (0.0–5.9)</td>
<td>0.0 (0.0–0.1)</td>
<td>0.01 (0.0–0.7)</td>
</tr>
<tr>
<td>a:SMa</td>
<td>64 (29–88)</td>
<td>80 (66–94)</td>
<td>80 (67–90)</td>
</tr>
</tbody>
</table>

Note: Categorical data are presented as n (%) and continuous variables as median (range). MOCA = mechnochemical endovenous ablation; ERG = ETS related gene; SMa = smooth muscle actin.

- Limited intimal hyperplasia up to 20% may be present.
- Percentage of total media area (range).
Tunica Intima

Tunica media

Device-induced spasm

+ foam

SYNERGY (spasm, sclero volume reduction, full-wall fibrosis)

Tunica adventitia

Whiteley MS. Media Damage Following Detergent Sclerotherapy Appears to be Secondary to the Induction of Inflammation and Apoptosis. *Eur J Vasc Endovasc Surg*. 2016

...also in humans

- Tunica Intima
- Tunica media
- Tunica adventitia

Similar clinical outcomes
- RF
- MOCA
- Post-operative pain
- Faster VCSS improvement

2 years F-up
- Hyperpigmentation
- More anatomical failures
Mohamed AH. Randomized Controlled Trial of Endovenous Laser Ablation Versus Mechanochemical Ablation With ClariVein in the Management of Superficial Venous Incompetence (LAMA Trial) [published online ahead of print, 2020 Jan 21]. Ann Surg. 2020

- Tunica Intima
- Tunica media
- Tunica adventitia

Similar VCSS & AVVQ outcomes

EVLA vs MOCA

Safe

Peri-procedural pain

1 years F-up

More anatomical failures
Tunica Intima

5 years

Freedom from anatomical failure was 78.7%

VCSS significantly improved (p < 0.001)

Table 2. Overview of the anatomical and clinical outcomes during five years’ follow-up.

<table>
<thead>
<tr>
<th></th>
<th>Early outcome (n=109 legs)</th>
<th>One year (n=101 legs)</th>
<th>Three years (n=85 legs)</th>
<th>Five years (n=75 legs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomical failure (n%)</td>
<td>3 (2.8%)</td>
<td>16 (15.8%)</td>
<td>22 (25.9%)</td>
<td>28 (37.3%)</td>
</tr>
<tr>
<td>Complete failure (n)</td>
<td>1 (0.9%)</td>
<td>8 (7.9%)</td>
<td>6 (7.0%)</td>
<td>10 (13.3%)</td>
</tr>
<tr>
<td>Partial failure (n)</td>
<td></td>
<td>8 (7.9%)</td>
<td>18 (21.0%)</td>
<td></td>
</tr>
<tr>
<td>Proximal GSV reconstitution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference in VCSS compared to baseline p compared to baseline</td>
<td>2 (1.9%)</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Change in VCSS compared to baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improved</td>
<td>81 (80.2%)</td>
<td>63 (74.1%)</td>
<td>42 (64.6%)</td>
<td></td>
</tr>
<tr>
<td>Equal</td>
<td>8 (9.4%)</td>
<td>4 (4.9%)</td>
<td>9 (13.8%)</td>
<td></td>
</tr>
<tr>
<td>Deteriorated</td>
<td>4 (4.0%)</td>
<td>6 (7.1%)</td>
<td>1 (1.3%)</td>
<td></td>
</tr>
</tbody>
</table>

Note: Values expressed as number of legs with percentages in parentheses – n (%). Percentages calculated according to number of legs available at each year of follow-up. GSV: great saphenous vein; VCSS: venous clinical severity score.
Tunica Intima

Tunica media

Tunica adventitia

Cutting-catheter Assisted Foam Sclerotherapy

Flebogrif™

Flebogrig:
1. Only 3 studies
2. Max 12 months
3. Lack of standardization
VenaSeal
(MEDTRONIC)

VenaBlock
(INVAMED)

Variclose
(BIOLAS)

Venaseal procedure
Kolluri R. Network meta-analysis to compare VenaSeal with other superficial venous therapies for chronic venous insufficiency.

Clinical recurrence-free: 99.38%

F-up: 23.96 m
450 pts

VenaBlock (INVAMED)

<table>
<thead>
<tr>
<th>Follow-up time</th>
<th>Patients controlled (n)</th>
<th>Patients lost to follow-up (n)</th>
<th>Partial Recanalization (n)</th>
<th>Full Recanalization (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd day</td>
<td>573</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1st Month</td>
<td>570</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6th Month</td>
<td>535</td>
<td>34</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12th Month</td>
<td>508</td>
<td>25</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>18th Month</td>
<td>483</td>
<td>23</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>24th Month</td>
<td>450</td>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

VenaBlock

(INVAMED)

Granuloma and glue spicules at 1 year

Variclose (BIOLAS)

- 7 studies
- 918 pts
- Pain: 4.8%
- Superficial venous thrombosis: 2.1%
- No DVT/PE
- Occlusion rate: 94.1% @12m
Table 4. International recommendations for non-thermal non-tumescent saphenous ablation recommendations.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Glue</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(2C)</td>
</tr>
<tr>
<td>MOCA</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Accepted as standard (2016)</td>
<td>Need more investigations</td>
<td>X</td>
<td>Clarivein (2A)</td>
</tr>
<tr>
<td>Other treatments</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Steam and powered phlebectomy: Need more investigation</td>
<td>Steam (2C)</td>
</tr>
</tbody>
</table>

Glue is 2C (LATAM), under evaluation in NICE and Europe
MOCA is 2A (LATAM), 2B (ACP-AVLS), accepted in NICE and Europe

Both NICE 2013⁹ and ESVS 2015⁴ are reporting the need of more investigations on cyanoacrylate ablation before providing any recommendation, while LATAM 2016 guidelines are recommending cyanoacrylate ablation with a grade 1C.⁹ The same need of further investigation was reported for mechano-chemical ablation (MOCA) with Clarivein according to ESVS 2015,⁴ while in the following year, NICE⁹ included this procedure among the recommended ones for saphenous reflux treatment. Always in 2016, AVLS⁸ and LATAM guidelines⁸ differed in the recommendation grade, assigning a 2B and 2A, respectively. AVF/SVS 2011 recommended powered phlebectomy with a 2C,² while NICE is currently stating that evidence does not appear adequate to support this procedure,⁹⁰ in accordance also with ESVS 2015,⁴ To the contrary, the same procedure has a 2C recommendation according to LATAM 2016,⁴ where also steam ablation is reported as 2C (the only guideline reporting about steam ablation). X: topic not mentioned in the guidelines.
Global guidelines trends & controversies in lower limb venous and lymphatic disease
Gianesini S et al.
European College of Phlebology guideline for truncal ablation

A Kürtat Bozkurt, Martin Lawaetz, Gudmundur Danielsson, Andreas M Lazaris, Milos Pavlovic, Sorin Olariu and Lars Rasmussen

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>techniques are recommended. For the treatment of great saphenous vein reflux, laser or RF ablation techniques are recommended in preference to surgery or foam sclerotherapy.</td>
<td>I</td>
<td>A</td>
<td>Sydnor et al. 98, He et al. 99, Rasmussen et al. 17, Marsden et al. 19, van der Velden et al. 34, Britenden et al. 88, Vennermo et al. 90, Wittens et al. 97, Carradice et al. 28, Samuel et al. 93, Boersma et al. 95, Tellings et al. 100, Paravatsu et al. 101</td>
</tr>
<tr>
<td>For the treatment of short saphenous reflux, laser or RF ablation techniques are recommended in preference to surgery or foam sclerotherapy.</td>
<td>II</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>For the treatment of symptomatic incompetence of the anterior or posterior accessory GSVs, laser, radiofrequency, or UGFS is recommended.</td>
<td>II</td>
<td>C</td>
<td>Schul et al. 102, Gibson et al. 103</td>
</tr>
</tbody>
</table>
European College of Phlebology guideline for truncal ablation

A Kürsat Bozkurt¹, Martin Lawaetz²,³, Gudmundur Danielsson⁴, Andreas M Lazaris⁵, Milos Pavlovic⁶,

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Class</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>For the treatment of great saphenous saphenous reflux, MOCA is recommended.</td>
<td>Iib</td>
<td>A</td>
<td>Elias and Raines,¹⁶ Tang et al.,¹² Witte et al.,¹³ Proebstle and van den Bos,¹⁰⁴ Kugler and Brown¹⁰⁵</td>
</tr>
<tr>
<td>For the treatment of great saphenous reflux, cyanoacrylate ablation is</td>
<td>Iia</td>
<td>A</td>
<td>Almeida et al.,⁵⁶ Bozkurt and Yilmaz,⁶⁰ Morrison et al.,⁶³ Gibson and Ferris,⁵⁴ Proebstle et al.,⁶⁵ Proebstle and van den Bos,¹⁰⁴ Whiteley,¹⁰⁶ Kolluri et al.¹⁰⁷</td>
</tr>
<tr>
<td>surgery is recommended as an alternative to endovenous ablation.</td>
<td>I</td>
<td>A</td>
<td>Lawaetz et al.,³³ Winterborn et al.,⁷¹ Dwerryhouse et al.,⁷² Miyazaki et al.,⁷³ Rutgers and Katslaar ⁷⁴</td>
</tr>
<tr>
<td>Technique</td>
<td>Early Rate (%)</td>
<td>1-year Rate (%)</td>
<td>2-year Rate (%)</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Radiofrequency ablation</td>
<td>90–100</td>
<td>85–98</td>
<td>85–96</td>
</tr>
<tr>
<td>Endovenous laser ablation</td>
<td>93–100</td>
<td>89–100</td>
<td>74–97</td>
</tr>
<tr>
<td>Endovenous foam</td>
<td>45–96</td>
<td>67–93</td>
<td>53–97</td>
</tr>
<tr>
<td>MOCA</td>
<td>87–99</td>
<td>88–97</td>
<td>96–97</td>
</tr>
<tr>
<td>Cyanoacrylate glue</td>
<td>93–99</td>
<td>92–93</td>
<td>92</td>
</tr>
</tbody>
</table>

European College of Phlebology guideline for truncal ablation
<table>
<thead>
<tr>
<th>Technique</th>
<th>Early occlusion rate (%)</th>
<th>1-year occlusion rate (%)</th>
<th>2-year occlusion rate (%)</th>
<th>3-year occlusion rate (%)</th>
<th>5-year occlusion rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiofrequency ablation</td>
<td>90–100</td>
<td>85–98</td>
<td>85–96</td>
<td>68–95</td>
<td>92 (Proebstle et al.(^3)) (= 94.2) (Lawaetz et al.(^{33}))</td>
</tr>
<tr>
<td>Endovenous laser ablation</td>
<td>93–100</td>
<td>89–100</td>
<td>74–97</td>
<td>79–100</td>
<td>65.7 (Weiss et al.(^{66}), 77(van der Velden et al.(^{34})) – 84.7 (Weiss et al.(^{66})), 93.2 (Lawaetz et al.(^{33}))</td>
</tr>
<tr>
<td>Endovenous foam</td>
<td>45–96</td>
<td>67–93</td>
<td>53–97</td>
<td>53–79</td>
<td>23 (van der Velden et al.(^{34})) (= 68.5) (Lawaetz et al.(^{33}))</td>
</tr>
<tr>
<td>MOCA</td>
<td>87–99</td>
<td>88–97</td>
<td>96–97</td>
<td>87 (Witte 2017(^{67}))</td>
<td>NA</td>
</tr>
<tr>
<td>Cyanoacrylate glue</td>
<td>93–99</td>
<td>92–93</td>
<td>92</td>
<td>94.4%(^{39})</td>
<td>NA</td>
</tr>
</tbody>
</table>
5 years extension study of patients from a randomized clinical trial (VeClose) comparing cyanoacrylate closure versus radiofrequency ablation for the treatment of incompetent great saphenous veins.

Journal of Vascular Surgery: Venous and Lymphatic Disorders online March 20, 2020

91.4% - 85.2%
is it time to stop the thermal treatment
is it true the claim that only NTNT are

• Cost-effective
• Effective
• Fast
• Low pain
• Office-based
What are we looking at?

Uhm, what are we looking at, sir?

the best outcome

OCCLUSION RATE

CLINICAL SUCCESS

COST-EFFECTIVENESS

PATIENT REPORTED OUTCOME

QoL

NS in recurrence, possible long-term benefit for **RFA** compared to **EVLA** or **HL/S**.
HLS and CHIVA
best in long-term recurrence

RF
best improvement in VCSS

EAVLA
highest pain, MOCA the less

Higher rates of **complete ablation**

Fewer **major** and **minor complications**
Consensus Document to be published on INTERNATIONAL ANGIOLOGY JOURNAL (IF 2,789)

1. Multi-lingual BOOKLET for the PUBLIC

2. Open access WEBSITE including evidence based information

3. Experts Consensus document

Multi-lingual awareness booklet

v-WINter DUBAI mission

Interactive Educational website
YOU CAN REPORT eventually encountered venous-lymphatic Fake News

www.vwinfoundation.com/fake-news-free-project/

In case you encountered potential misinformation in the venous-lymphatic field, we hope you will join our teamwork by filling the form below. Please note the report can also be anonymous if you wish and in whatever language.

Fake news report

Name:

Email:

Message:

www.vwinfoundation.com/fake-news-free-project/
Let's have a Turkish Coffee together!